Theoretical Overview – AGS Users Meeting

Derek Teaney
SUNY Stonybrook and RBRC Fellow

Outline

Hydro and Energy loss:

Outline

Hydro and Energy loss:

Hydro

Why I believe that there's hydro at RHIC (and why you should too):

- 1. ✓ Ideal hydro works kind-of (not for today)
- 2. Viscous corrections systematically capture deviations of data from ideal hydro

Viscous Hydro – Dependence on System Size

$$T^{\mu\nu} = \underbrace{eu^{\mu}u^{\nu} + pg^{\mu\nu}}_{\text{Ideal}} - \underbrace{\eta \left\langle \nabla^{\mu}u^{\mu}\right\rangle}_{\text{Viscous}} + \underbrace{\dots}_{\text{2nd Order}}_{\text{C}} - (\ell_{\rm mfp}/L)^2$$

- Totally integrated v_2 versus systemsize (centrality) must come out right:
 - Depends on almost nothing except $T^{\mu\nu}$ (e.g. freezeout, $\delta f,\ldots$)
 - H. Song, S.A. Bass, U. Heinz, T. Hirano, C. Shen, PRL106 (2011) 192301

It works! (especially w. Hydro+cascade)

Basic $O(\ell_{\rm mfp}/L)$ come out right

- 1. Characterize energy density with ellipse
 - Elliptic Shape gives elliptic flow

$$v_2 = \langle \cos 2\phi_{\mathbf{p}} \rangle$$

- 2. Around almond shape are *fluctuations*
 - Triangular Shape gives v_3 (Alver)

$$v_3 = \langle \cos 3(\phi_{\mathbf{p}} - \Psi_3) \rangle$$

- 3. Hot-spots give correlated higher harmonics
 - Systematized and simulated

- 1. Characterize energy density with ellipse
 - Elliptic Shape gives elliptic flow

$$v_2 = \langle \cos 2\phi_{\mathbf{p}} \rangle$$

- 2. Around almond shape are *fluctuations*
 - Triangular Shape gives v_3

$$v_3 = \langle \cos 3(\phi_{\mathbf{p}} - \Psi_3) \rangle$$

- 3. Hot-spots give correlated higher harmonics
 - Systematized and simulated

- 1. Characterize energy density with ellipse
 - Elliptic Shape gives elliptic flow

$$v_2 = \langle \cos 2\phi_{\mathbf{p}} \rangle$$

- 2. Around almond shape are *fluctuations*
 - Triangular Shape gives v_3

$$v_3 = \langle \cos 3(\phi_{\mathbf{p}} - \Psi_3) \rangle$$

- 3. Hot-spots give correlated higher harmonics
 - Systematized and simulated

Determining the Shear Viscosity of QGP with Flow:

- 1. Characterize energy density with ellipse
 - Elliptic Shape gives elliptic flow

$$v_2 = \langle \cos 2\phi_{\mathbf{p}} \rangle$$

- 2. Around almond shape are *fluctuations*
 - Triangular Shape gives v_3

$$v_3 = \langle \cos 3(\phi_{\mathbf{p}} - \Psi_3) \rangle$$

- 3. Hot-spots give correlated higher harmonics
 - Systematized and simulated

- 1. Characterize energy density with ellipse
 - Elliptic Shape gives elliptic flow

$$v_2 = \langle \cos 2\phi_{\mathbf{p}} \rangle$$

- 2. Around almond shape are *fluctuations*
 - Triangular Shape gives v_3 (Alver)

$$v_3 = \langle \cos 3(\phi_{\mathbf{p}} - \Psi_3) \rangle$$

- 3. Hot-spots give correlated higher harmonics
 - Systematized and simulated

Why is this useful?

- 1. Different harmonics are damped differently by viscosity
- 2. Depends on system size, momentum, . . .

Experiments vastly over constrain hydrodynamic predictions for QGP!

3+1 E by E viscous hydro simulations by Schenke et al

Higher harmonics are damped most by viscosity

Pattern to Viscous corrections

for example Yan Li & DT

General pattern for arbitrary cumulant worked out: A. Yarom, S. Gubser

Higher pt but still hydro

Viscous corrections grow with p_T and "n"

ullet δf related to energy loss at modest momenta

Phenix v_3 data

Hydro Works:

(schenke, luzum)

1. Centrality dependence of v_2 and v_3

$$\sim (\ell_{
m mfp}/L)$$

- 2. Relative strength of v_2 and v_3
- 3. p_T dependence of viscous corrections

$$\sim (\ell_{\rm mfp}/L) \frac{p_T}{T}$$

Phenix v_3 data

Hydro Works:

(schenke, luzum)

1. Centrality dependence of v_2 and v_3

$$\sim (\ell_{
m mfp}/L)$$

- 2. Relative strength of v_2 and v_3
- 3. p_T dependence of viscous corrections

$$\sim (\ell_{\rm mfp}/L) \frac{p_T}{T}$$

Phenix v_3 data

Hydro Works:

(schenke, luzum)

1. Centrality dependence of v_2 and v_3

$$\sim (\ell_{
m mfp}/L)$$

- 2. Relative strength of v_2 and v_3
- 3. p_T dependence of viscous corrections

$$\sim (\ell_{\rm mfp}/L) \frac{p_T}{T}$$

Hydro

Why I believe that there's hydro at RHIC (and why you should too):

- √ Ideal hydro works kind-of (not for today)
- √ Viscous corrections systematically capture deviations of data from ideal hydro

Makes the bounds $1/4\pi < \eta/s < 3/4\pi$ kind of convincing

Energy Loss

Dijet Asymmetries at the LHC

$$A_J \equiv \frac{E_{T1} - E_{T2}}{E_{T1} + E_{T2}}$$

Theoretical Calculations seem to get the Dijet Asymmetry

Prediction:

Qin, Muller: arXiv:1012.580

Young, Schenke et al: arXiv:1103.5769

See also, J. Casalderrey-Solana et al arXiv:102.0745

All calculations move soft remnants away from the jet with "soft" $1/p_T$ transport mechanisms

(Are they consistent with measured j_T and longitudinal momentum distributions though?)

Energy loss at sub-asymptotic energies is important:

- 1. Kinematic constraints limit the agreement between energy loss formalisms
 - See the report of the Jet Collaboration: arXiv:1106.1106
- 2. Finite energy leads to large angle emission outside of radiative loss formalism

Radiative and Collisional Loss:

Collisional Energy Loss: $\frac{dp_{\text{coll}}^{LO}}{dt}(\mu)$

Features:

- 1. Plasma is excited: $T \ll \mu \ll E$
- 2. Hard particle in hard particle out

Features:

- 1. Plasma is excited: $T \ll \mu \ll E$
- 2. Hard particle in, two hard part. out
 - We require $xE\gg\mu$

As the bremmed energy gets lower and lower, the angle $\Delta \theta$ gets larger and larger

Radiative and Collisional Loss

Soft Radiative Loss:
$$\frac{dp_{\text{coll}}^{NLO}}{dt}(\mu)$$

Features:

- 1. Plasma is excited: $T \ll \mu \ll E$
- 2. Hard particle in, one hard particle out

This is higher order correction to the collisional E-loss rate

Collisional Energy Loss: $\frac{dp_{\text{coll}}^{LO}}{dt}(\mu)$

Final result is independent of μ :

$$\underbrace{\frac{dp_{\mathrm{coll}}^{LO}}{dt} + \frac{dp_{\mathrm{coll}}^{NLO}}{dt}}_{\text{Phenomenological Coll E-loss}} + \underbrace{\frac{dp_{\mathrm{rad}}}{dt}}_{\text{Radiative Loss}}$$

Higher pt but still hydro

Summary

- 1. Hydro works amazingly well
- 2. Energy loss is progressing
- 3. What got left out (maybe):
 - Is a quasi particle picture valid? At what temperature?
 - See quark matter talks: Nan Su, Olaf Kaczmarek

Quasi particle picture from Lattice spectral Densities (Olaf Kaczmarek, Quark Matter)

• Fits to Lattice Euclidean Data

